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Abstract. The transition between the cubic and tetragonal phase in SrTiO3 shows an excess
specific heat of 0.0035 J g−1 K−1. Comparison between the temperature evolution of the
excess entropy1S = ∫ (C/T ) dT and the structural order parameterQ shows1S ∝ Q2 within
experimental errors(γ = 1.004±0.006). The apparent order parameter exponentβ̃ = 0.35±0.02
was confirmed and analysed using a Landau-type expression for the excess Gibbs free energy
1G = Aθs(coth(θs/T ) − coth(θs/Tc))Q2 + 1

4BQ
4 + 1

6CQ
6 with A = 0.70 J K−1 mol−1,

B = 31.22 J mol−1, C = 42.17 J mol−1, Tc = 105.65 K andθs = 60.75 K. The closeness to
the tricritical point is seen byB < C; all thermodynamic data between 85 K andTc could be
described selfconsistently using this approach although small deviations cannot be excluded in
a temperature interval of less than 1 K aroundTc and a small tail of excess entropy atT > Tc.

1. Introduction

The phase transition at 105.5 K in SrTiO3 has great historical significance because almost
every development in the theory of structural phase transitions measured its success on the
ability to correctly describe experimental observations in SrTiO3. It was the first material for
which soft modes were clearly measured [1–3], observations on SrTiO3 were one of the main
justifications for the development of renormalization techniques for the description of (real
or perceived) critical fluctuations and it was also the first material for which a two-length-
scale behaviour was postulated [4–8]. Most recently, the appearance of quantum coherent
states brought SrTiO3 back into scientific controversy [9–11]. Despite major efforts over the
last 30 years to understand this apparently simple phase transition, much ‘progress’ had to
be revised, because it was based on incorrect experimental observations. It is much clearer
now that the significance of criticalities has to be seen in the context of similar effects
due to lattice imperfections, for example [12, 13]. It is the purpose of this paper to revisit
the phase transition and present, for the first time, absolute values for the excess specific
heat of the transitions. We shall argue that these results can be understood within mean
field theory with little (if any) contribution from non-mean-field critical fluctuations. In the
classification scheme of Cowley [14], this paper belongs firmly to the classical era.

Starting points of this investigation are the previous observations that, firstly, the excess
entropy of a slab of SrTiO3 with large (110) faces appeared to follow the same temperature
dependence as the square of the static order parameter as measured by ESR [15, 16]. The
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second observation is that a coarse domain structure (twins and antiphase domains) appears
under cooling atT . Tc with no indication of interchanges of rotation axes which could be
statistically relevant [17]. This means that the degeneracy of the order parameter(n = 3) is
lifted at temperatures just belowTc. The Slonczewski–Thomas Gibbs free energy [18] with
the three-component order parameterQ = (Q1,Q2,Q3) is then reduced to a scalar order
parameter if the effect of domain boundaries and antiphase boundaries is ignored:

G = G0+ 1

2
Aθs

(
coth

θs

T
− coth

θs

Tc

)
Q2+ 1

4
BQ4+ 1

6
CQ6. (1)

In this form, quantum saturation is taken into account in the displacive limit [19–21].
The usual strain relaxations are understood to be incorporated into the various parameters
of G. In contrast to Slonczewski and Thomas, the sixth-order term is considered here
explicitly because we shall argue that the phase transition is close to a tricritical point with
B/ATc < C/ATc.

This approach is different from the currently held views (the ‘critical era’ in Cowley’s
classification) of the transition as multicritical with ann = 3-fold degenerate R25 soft mode
and a Heisenberg-type effective Hamiltonian [22]. This Hamiltonian contains the flip motion
of rotation axes and a cubic anisotropy part which characterizes the soft mode dispersion.
It has been used for the analysis of various stress dependent measurements [23, 24] and
appears to describe well the results of neutron scattering experiments atT > Tc with the
critical exponentγ = 1.4± 0.1. There is little doubt that critical fluctuations lead to non-
mean-field behaviour in the cubic phase but it is less clear what happens in the tetragonal
phase.

The theoretical situation for the cubicn = 3, d = 3 systems is also somewhat confused.
Aharony [25] predicted an order parameter exponentβ = 0.365 andγ = 1.386 while
Nattermann [26] argued that these exponents would only occur very close toTc and that,
in the presence of cubic anisotropies, all the exponents might be larger. Bruce [27] and
Nattermann [26] concluded that the system had probably a first-order transition, although
this first-order step might be too small to be seen experimentally.

In this paper we show that there is no experimental evidence for any latent heat and,
consequently, the transition is continuous within accessible resolution. Furthermore we shall
show thatγ = 1.004± 0.006 atT < 0.99 Tc in agreement with the mean field description
for such temperatures but in disagreement with previous prediction of renormalization group
approaches (e.g. [11, 23]).

2. Experimental techniques

The experimental arrangement of the specific heat measurement has been described in detail
[28]. The sample is pressed between two identical heat fluxmeters which are made from 50
chromel–constantan thermocouples [29] connected in series with the wires placed in parallel
lines. One of the fluxmeters is fixed to a calorimeter block while the other is pressed by
a bellow. The fluxmeters which have a circular section of 1 cm2, are rigid enough to
apply a controlled uniaxial stress on the sample in the range between 0 and 12 bars. Two
electrical resistance (heaters) are placed between each face of the sample and fluxmeters.
These resistances can dissipate a uniform heat power on the sample faces or measure the
temperature of the fluxmeter junctions near the sample.

The block temperature is measured with a commercial platinum thermometer (Leads
and Northurp (model 8164B)) and a Tinsley resistance bridge (model Ambassador). This
bridge is also used to measure the resistances of the heaters thus determining the temperature
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at the internal junction of the fluxmeters. A HPE-1328A current source and a HPE-1326
multimeter are used respectively to produce and to measure the power dissipated in the
heaters. The e.m.f. produced by the fluxmeters is measured by a Keithley 181 nanovoltmeter
with a repetition rate of four measurements per second. All the devices are controlled by
an HP-75000 data acquisition system.

The specific heat of the sample is measured using the following procedure [30]. We
start from the steady state obtained when the same powerW is dissipated in both heaters.
This heat powerW crosses through the fluxmeters producing an e.m.f.V0. At the initial
time the power is cut off and the e.f.m.V is integrated up to the timet1 when the thermal
equilibrium with the block is obtained and the e.m.f. reaches the valueV1.

If the measurements are carried out on quasistatic conditions changing the temperature
of the block at very low constant rate(∂T /∂t < 0.1 K h−1), the e.m.f.V1 is very small and
practically constant. It is proportional to the heat flux crossing the fluxmeters to produce
a change of the sample temperature at the rate of the block temperature. When there is
a dissipative effect in the sample or a first-order transition is produced,V1 changes with
time and it is proportional to the dissipative power or the heat power necessary to change
the transition enthalpy of the transition. This means that we can detect when a first-order
transition is produced and to distinguish when the specific heat data are affected by the
latent heat [31]. The measurements were carried out at constant rate of about 0.06 K h−1

thus a data point was obtained every 0.02 K. The increase of the temperature in the sample
due to the measurement process is estimated to be 0.06 K.

The sample was a single crystal of SrTiO3. The same sample was used by Chrosch and
Salje [17] for x-ray diffraction analysis of its domain structure ofT < Tc. It was found that
only very coarse twin and anti-phase domains were formed in this sample which excludes
significant contributions from domain boundaries to the experimental values ofCp. The
sample was Verneuil grown with a purity of 99.9998%. The main impurities were 3 ppm
of Fe and 2 ppm of Ni. The large face of the crystal was the crystallographic (100) plane
instead of the (110) plane used in earlier experiments [16].

3. Results

The raw data of the absolute specific heat for a typical run between 85 and 120 K are shown
in figure 1. No variation of the e.m.f.V1 has been detected at any run, thus there is no
indication for a first-order type phase transition.

In order to obtain the specific heat baseline the following procedure was adopted.
In the temperature interval between 80 and 90 K, all other experimental observations
[15, 17, 28, 33] find the same linear temperature evolution of the square of the order
parameter. We therefore constrain the temperature dependence of the excess entropy to
show the same linear dependence as the square of the order parameter at low temperatures
[15, 32]. Thus x-ray data allow us to evaluate that the specific heat excess at 85 K is
about 4× 10−4 J g−1 K−1 (0.2%) which is lower than our experimental error(±0.4%).
Considering this value together with data between 108 and 120 K we have fitted a second-
order polynomial function to obtain the baseline of the specific heat. This curve is also
represented in figure 1.

The excess of specific heat in figure 2 was identical within the experimental scatter for
all six experimental runs under different uniaxial pressure ranging between 0 and 12 bars.
This result is different to that obtained previously on face [110] where a stress of this order of
magnitude clearly affects the specific heat behaviour. This result is in agreement with x-ray
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Figure 1. Experimental data of the total specific heat of SrTiO3 between 85 and 120 K. The
baseline for the extrapolated specific heat of the cubic phase is shown as a linec = aT 2+bT +e
anda = −8.01× 10−6 J g−1 K−3, b = 0.00395 J g−1 K−2, e = 0.0926 J g−1 K−1.

Figure 2. Excess specific heat with a Landau step atTc of 0.0035 J g−1 K−1. A small cusp is
seen in this data set at 104 K and a weak tail between 105 and 107 K; these two features are
sample dependent.

study [17] which shows that uniaxial stress perpendicular to (110) generates stress dependent
domain boundaries while little effect was found for stresses perpendicular to (100).
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The only variation was found in the slope of the specific heat versus temperature near
105 K. In all experiments a weak rounding was found which could well be related to
structural imperfections. This effect was always limited to a maximum temperature interval
of 2 K. In some experiments, but not all, a small cusp is seen between 103 and 105 K. At
lower temperatures a smooth and continuous decay of1Cp is found.

In order to compare these results with those of the temperature evolution of the struc-
tural order parameter, the excess entropy was calculated by integration of the excess specific
heat data [13, 16]. The result is shown in figure 3. The same procedure was carried out for
experiments where the sample was subject to uniaxial stress. While the raw data are almost
indistinguishable, systematic variations may be seen after integration of1Cp and calcula-
tions of the excess entropy. As seen in figure 4 the absolute values of the excess entropy
vary between experiments by 7× 10−5 J g−1 K−1, although the relative temperature evolu-
tion remains the same for all experiments. Ignoring the tails atT > 104.7 K, all 1S curves
can be well described at 100 K< T < 104.7 K by a power-law temperature dependence
with an effective exponent 2̃β, and β̃ = 0.35± 0.02. Small variations of base line do not
affect the value ofβ but only the absolute values of the excess entropy at low temperatures.

Figure 3. Temperature evolution of the excess entropy (diamonds) and the square of the static
order parameter as determined from ESR measurements (full squares), synchrotron measurements
of excess intensities (circles) and rocking XRD experiments (open squares). The line is the best
fit for a mean field type order parameter with1

2Aθs(coth(θs/T ) − coth(θs/Tc)Q2 + 1
4BQ

4 +
1
6CQ

6 andA = 0.7 J K−1 mol−1, B = 31 J mol−1, C = 42 J mol−1, T = 105.65 K and
θs = 60 K.

4. Conclusion

The effective exponent̃β is close to the experimentally observed order parameter exponent
β [15, 16]. This conclusion is rather independent of the actual choice of the baseline because
the values of1S are only taken at temperatures close toTc. The question arises of whether
a similar agreement exists also at lower temperatures, i.e. whether the reported crossover
between the regime ofβ ≈ 0.35 and the regime with linear temperature dependence of
Q2 is reproduced by the experimental data. In order to answer this question, for each
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Figure 4. Stress dependence of the temperature evolution of the excess entropy for: A: heating,
no stress; B: heating, 12 bar; C: heating, 7 bar; D: cooling, no stress; E: cooling, 7 bar;
F: cooling, 12 bar; G: heating, 10 bar. All curves can be rescaled within experimental errors to
one master curve by multiplication of1S with an appropriate factor.

Figure 5. Correlation between the excess entropy and the excess intensity of x-ray diffraction
experiments. The temperature of several data is also represented in the graph. The straight line
adjusted to the data isI = a + b1S anda = 8.5× 10−5, b = 991 J−1 g K.

temperature point the values of1S are plotted against the values of the excess intensities
of x-ray diffraction data in figure 5 [33]. The diffraction data are, in turn, identical with
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results from rocking curve measurements on the identical sample used for the measurements
of the specific heat [17]. This graph shows clearly that both quantities are proportional to
each other. In figure 6 the correlation ln(1S/I) is plotted against ln(Tc − T ). With
ln(1S/I) = ln1+ (γ − 1) ln(Tc − T ) we find γ = 1.004± 0.006 andTc = 104.75 K (for
a stressσ = 10 kg cm−2). Similar values were found for other stresses. This observation
shows thatγ is practically identical with the mean field values for all temperatures below
104 K. This does not rule out that non-mean-field behaviour exists in a small intervalvery
close toTc but we can exclude this possibility for any interval larger than 1 K.

Figure 6. Determination of the exponentγ from the plot ln(1S/I) versus ln(Tc − T ) with
γ = 1.004± 0.006.

We now discuss the apparent puzzle that the effective order parameter exponent is
0.35 while γ = 1. Starting from the mean field expression (1) we analyse all available
experimental data in the temperature interval between 80 and 110 K. The graph in
figure 3 shows that the normalized rotation angle of the octahedral TiO6 groups (from ESR
measurements [15]), the excess diffraction intensities from synchrotron experiments [33], the
twin angle between microdomains as measured by x-ray rocking curve experiments [17] and
our data of the excess entropy are all identical within experimental errors. This experimental
result shows that the entropy scales as the square of the structural order parameter, at least
at temperatures below 105 K. The second question is whether the temperature evolution of
these experimental quantities can be described by an appropriate numerical expression of
the excess Gibbs free energy in equation (1). Fitting the parametersA, Tc, B, C andθs to
the experimental data leads to the following solution

A = 0.70 (±0.1) J K−1 mol−1

B = 31.22 (±0.45) J mol−1

C = 42.17 (±1.75) J mol−1

Tc = 105.65 (±0.17) K

θs = 60.75 (±1.51) K.
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We shall show in a forthcoming paper that these parameters also describe all experimental
data points at lower temperature correctly. Two conclusions can be drawn from these
parameters. Firstly, the transition is second order but rather close to a tricritical point.
We find B < C. Another measure [13] for the closeness of a tricritical point is the ratio
B2/4AC = 8.2 K � Tc which indicates that a shift ofTc by only 8.2 K would produce a
tricritical phase transition. The interval in which a simple second-order phase transition with
β = 0.5 can actually be observed is very small and close toTc. The second conclusion is that
the empirical value ofθs is higher than expected in a soft mode picture where no coupling
occurs between the soft mode and other lattice excitations. Following [20] the characteristic
temperature below which the order parameter becomes rather independent of temperature
is in displacive systemsTs ≈ 1

2θs = 30 K. At this temperature all entropy changes are
frozen out. In a picture of only one soft mode driving the phase transition without any
coupling with other degrees of freedom (e.g. other phonons), the temperaturesTs and θs
are determined by the bare frequency of the soft mode. In the other extreme, the soft mode
may couple strongly with all other phonons. Entropy saturation is then expected when the
average phonon frequency is equal to the freezing temperature. It was shown in [20] that
this latter scenario leads toθs ≈ 1

2θE whereθE is the Einstein temperature of the material.
Experimentallyθs ≈ 1

2θE was found for the displacive phase transition in quartz [20, 34].
In SrTiO3, we find θs � 1

2θE which shows that the coupling between the soft mode and
other dynamical excitations in SrTiO3 is weaker than in quartz although it still leads to an
increase ofθs compared with the expected value for the bare soft mode frequency.

In summary, we find that the excess specific heat data of SrTiO3 show a mean field
behaviour [12, 21] close to a tricritical point with possible influence of impurities atT > Tc
[35]. Entropy saturation occurs at temperatures higher than expected from the bare soft
mode frequency but lower than the average phonon frequency.
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[16] Gallardo M C, Jiḿenez J, del Cerro J and Salje E K H 1996J. Phys.: Condens. Matter8 83
[17] Chrosch J and Salje E K H 1998J. Phys.: Condens. Matter10 2817



Cubic–tetragonal phase transition in SrTiO3 5543

[18] Slonczewski J C and Thomas H 1970Phys. Rev.B 1 3599
[19] Salje E, Wruck B and Thomas H 1991Z. Phys.82 399
[20] Salje E K H, Wruck B and Marais S 1991Ferroelectrics124 185
[21] Hayward S A and Salje E K H 1998J. Phys.: Condens. Matter10 1421
[22] Aharony A and Bruce A 1979Phys. Rev. Lett.42 462
[23] Stokka S and Fossheim K 1982Phys. Rev.B 25 4896
[24] Müller K and Berlinger W 1975Phys. Rev. Lett.35 1547
[25] Aharony A 1976Phase Transitions and Critical Phenomenavol 6, ed C Domb and M S Green (New York:

Academic) p 357
[26] Nattermann T 1976J. Phys. C: Solid State Phys.9 3337
[27] Bruce A D 1980Adv. Phys.29 111
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